Appendix 5: Chemical Kinetics Problems - Answer Key

1. Reactions the produce a gas (measure volume/pressure); reaction that involve the ion as a product (conductivity); reactions that produce a colour change (spectrometer-measure colour intensity)
2. (a) colour change $\left(\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}\right)$
(b) volume/pressure $\left(\mathrm{H}_{2}(\mathrm{~g})\right.$ produced)
3. $\mathrm{mol} / \mathrm{L} \cdot \mathrm{s}$
4. $\quad 3 \mathrm{H}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{NH}_{3}$
$\wedge \quad \wedge$
The rate of disappearance of H_{2} is 3 times as fast as compared to the rate of disappearance of N_{2}.
$3 \mathrm{H}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{NH}_{3}$
$\wedge \quad \wedge$
The rate of production of NH_{3} is 2 times as fast as compared to the rate of disappearance of N_{2}.
5. Rate of consumption of A is

$$
2 A+B \rightarrow 3 C
$$

\wedge \qquad
is twice (2x) the rate of consumption of $B(0.30 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s})$
$=2 \times 0.30 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}$
$=0.60 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}$
Rate of formation of A is

$$
2 A+B \rightarrow 3 C
$$

is three times $(3 x)$ the rate of consumption of $B(0.30 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s})$

$$
\begin{aligned}
& =3 \times 0.30 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{~s} \\
& =0.90 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{~s}
\end{aligned}
$$

6. $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$

2:4 ratio which simplifies to a 1:2 ratio
The rate of formation of NO_{2} is 2 times as fast as compared to the rate of disappearance of $\mathrm{N}_{2} \mathrm{O}_{5}$. rate of formation of $\mathrm{NO}_{2}=2 \times 2.5 \times 10^{-6} \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}=5.0 \times 10^{-6} \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}$
$2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$

The rate of formation of O_{2} is $1 / 2$ times as fast as compared to the rate of disappearance of $\mathrm{N}_{2} \mathrm{O}_{5}$. rate of formation of $\mathrm{O}_{2}=1 / 2 \times 2.5 \times 10^{-6} \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}=1.25 \times 10^{-6} \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}$
7.(a) $\quad \mathrm{I}_{(\mathrm{aq})}^{-}+\mathrm{OCl}_{(\mathrm{aq})}^{-} \rightarrow \mathrm{Cl}_{(\mathrm{aq})}^{-}+\mathrm{Ol}_{(\mathrm{aq})}^{-}$

$$
\begin{aligned}
& \text { Rate }=\frac{-\Delta\left[I^{-}\right]}{\Delta t}=\frac{-\Delta\left[O C l^{-}\right]}{\Delta t}=\frac{\Delta\left[C l^{-}\right]}{\Delta t}=\frac{\Delta\left[O^{-}\right]}{\Delta t} \\
& \text { (b) } \quad 3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{O}_{3(\mathrm{~g})}
\end{aligned}
$$

$$
\text { Rate }=-\frac{1 \Delta\left[O_{2}\right]}{3 \Delta t}=\frac{1 \Delta\left[O_{3}\right]}{2 \Delta t}
$$

(c) $\quad 4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
(d) $\quad \mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

$$
\text { Rate }=-\frac{\Delta\left[\mathrm{CH}_{4}\right]}{\Delta t}=-\frac{1 \Delta\left[\mathrm{O}_{2}\right]}{2 \Delta t}=\frac{\Delta\left[\mathrm{CO}_{2}\right]}{\Delta t}=\frac{1 \Delta\left[\mathrm{H}_{2} \mathrm{O}\right]}{2 \Delta t}
$$

8. (a) $\left[\mathrm{CH}_{4}\right]=\underline{\mathrm{mol}}=8.0 \mathrm{~mol}=4.0 \mathrm{~mol} / \mathrm{L}$

L 2.00 L
Rate of consumption of $\mathrm{CH}_{4}=\frac{\text { concentration }}{\text { time }}=\frac{4.0 \mathrm{~mol} / \mathrm{L}}{3.2 \mathrm{~s}}=1.25 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}$
(b) Rate of consumption of O_{2}

The rate of consumption of O_{2} is 2 times as fast as compared to the rate of consumption of CH_{4} is $2 \times 1.25 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}=2.50 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}$
(c) Rate of production of CO_{2}

$$
\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

The rate of production of CO_{2} is the same as compared to the rate of consumption of CH_{4} is
$1 \times 1.25 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}=1.25 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}$
(d) Rate of production of $\mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

The rate of production of $\mathrm{H}_{2} \mathrm{O}$ is 2 times as fast as compared to the rate of consumption of CH_{4} is $2 \times 1.25 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}=2.50 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}$
9. (a) $4 \mathrm{HI}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{I}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

The rate of formation of I_{2} is 2 times as fast as compared to the rate of consumption of O_{2}.

$$
=2 \times 0.0042 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{~s}=0.0084 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{~s}
$$

(b) $4 \mathrm{HI}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{I}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

The rate of formation of $\mathrm{H}_{2} \mathrm{O}$ is 2 times as fast as compared to the rate of consumption of O_{2}.
$=2 \times 0.0042 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}=0.0084 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}$
(c) $\underset{\uparrow}{4 \mathrm{HI}_{(\mathrm{g})}}+\underset{\uparrow}{\mathrm{O}_{2(\mathrm{~g})}} \rightarrow 2 \mathrm{I}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

The rate of consumption of HI is 4 times as fast as compared to the rate of consumption of O_{2}.

$$
=4 \times 0.0042 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{~s}=0.0168 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{~s}
$$

10. (a)

The rate of formation of $\mathrm{N}_{2} \mathrm{O}_{5}$ is 2 times as fast as compared to the rate of consumption of O_{2}.
$=2 \times 0.024 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}=0.048 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}$
(b)

The rate of consumption of NO_{2} is 4 times as fast as compared to the rate of consumption of O_{2}.
$=4 \times 0.024 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}=0.096 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}$

