Appendix 5: Chemical Kinetics Problems - Answer Key

- 1. Reactions the produce a gas (measure volume/pressure); reaction that involve the ion as a product (conductivity); reactions that produce a colour change (spectrometer-measure colour intensity)
- 2. (a) colour change ($Fe^{2+} \rightarrow Fe^{3+}$)
 - (b) volume/pressure (H₂(g) produced)
- 3. mol / L·s
- 4. $3 H_2 + N_2 \rightarrow 2 NH_3$

The rate of disappearance of H_2 is 3 times as fast as compared to the rate of disappearance of N_2 .

$$\begin{array}{c} 3 \text{ H}_2 + \text{N}_2 \rightarrow 2 \text{ NH}_3 \\ & & & & & & & & & & \end{array}$$

The rate of production of NH₃ is 2 times as fast as compared to the rate of disappearance of N₂.

5. Rate of consumption of A is

$$2\,A\ +\ B\ \rightarrow\ 3\,C$$

$$\Lambda$$

is twice (2x) the rate of consumption of B (0.30 mol / L·s)

- $= 2 \times 0.30 \text{ mol / L·s}$
- = 0.60 mol / L·s

Rate of formation of A is

$$2 A + B \rightarrow 3 C$$

is three times (3x) the rate of consumption of B (0.30 mol / L·s)

- $= 3 \times 0.30 \text{ mol } / \text{L·s}$
- = 0.90 mol / L·s

6.
$$2 N_2 O_5 \rightarrow 4 NO_2 + O_2$$

2:4 ratio which simplifies to a 1:2 ratio

The rate of formation of NO₂ is 2 times as fast as compared to the rate of disappearance of N₂O₅.

rate of formation of $NO_2 = 2 \times 2.5 \times 10^{-6} \text{ mol } / \text{ L} \cdot \text{s} = 5.0 \times 10^{-6} \text{ mol } / \text{ L} \cdot \text{s}$

$$\begin{array}{ccc} 2 \ \mathsf{N}_2\mathsf{O}_5 \ \rightarrow \ 4 \ \mathsf{N}\mathsf{O}_2 + \mathsf{O}_2 \\ & & & & & & & & & & & \\ \end{array}$$

(b)

The rate of formation of O₂ is 1/2 times as fast as compared to the rate of disappearance of N₂O₅. rate of formation of $O_2 = 1/2 \times 2.5 \times 10^{-6} \text{ mol } / \text{ L·s} = 1.25 \times 10^{-6} \text{ mol } / \text{ L·s}$

7.(a)
$$I_{(aq)}^{-} + OCI_{(aq)}^{-} \rightarrow CI_{(aq)}^{-} + OI_{(aq)}^{-}$$

$$-\Delta[I^{-}] -\Delta[OCI^{-}] \Delta[CI^{-}]$$

Rate =
$$\frac{-\Delta[I^-]}{\Delta t} = \frac{-\Delta[OCl^-]}{\Delta t} = \frac{\Delta[Cl^-]}{\Delta t} = \frac{\Delta[O^-]}{\Delta t}$$

(b)
$$3 O_{2(g)} \rightarrow 2 O_{3(g)}$$
 Rate = $-\frac{1 \Delta [O_2]}{3 \Delta t} = \frac{1 \Delta [O_3]}{2 \Delta t}$

(c) 4 NH
$$_{3(g)}$$
 + 5 O $_{2(g)}$ \rightarrow 4 NO $_{(g)}$ + 6 H $_2$ O $_{(g)}$

Rate =
$$-\frac{1}{4} \frac{\Delta[NH_3]}{\Delta t} = -\frac{1}{5} \frac{\Delta[O_2]}{\Delta t} = \frac{1}{4} \frac{\Delta[NO]}{\Delta t} = \frac{1}{6} \frac{\Delta[H_2O]}{\Delta t}$$

(d)
$$CH_{4(g)} + 2 O_{2(g)} \rightarrow CO_{2(g)} + 2 H_2O_{(g)}$$

$$Rate = -\frac{\Delta[CH_4]}{\Delta t} = -\frac{1\Delta[O_2]}{2 \Delta t} = \frac{\Delta[CO_2]}{\Delta t} = \frac{1\Delta[H_2O]}{2 \Delta t}$$

8. (a)
$$[CH_4] = \underline{mol} = \underline{8.0 \text{ mol}} = 4.0 \text{ mol } / L$$

L 2.00 L

Rate of consumption of
$$CH_4 = \frac{\text{concentration}}{\text{time}} = \frac{4.0 \text{ mol / L}}{3.2 \text{ s}} = 1.25 \text{ mol / L} \cdot \text{s}$$

(b) Rate of consumption of O₂

$$CH_{4(g)} + 2 O_{2(g)} \rightarrow CO_{2(g)} + 2 H_2O_{(g)}$$

The rate of consumption of O₂ is 2 times as fast as compared to the rate of consumption of CH₄ is

$$2 \times 1.25 \text{ mol } / \text{ L·s} = 2.50 \text{ mol } / \text{ L·s}$$

(c) Rate of production of CO₂

$$CH_{4(g)} + 2 O_{2(g)} \rightarrow CO_{2(g)} + 2 H_2O_{(g)}$$

The rate of production of CO2 is the same as compared to the rate of consumption of CH4 is

$$1 \times 1.25 \text{ mol } / \text{ L·s} = 1.25 \text{ mol } / \text{ L·s}$$

(d) Rate of production of H₂O

$$CH_{4(g)} + 2 O_{2(g)} \rightarrow CO_{2(g)} + 2 H_2O_{(g)}$$

The rate of production of H₂O is 2 times as fast as compared to the rate of consumption of CH₄ is

$$2 \times 1.25 \text{ mol } / \text{ L·s} = 2.50 \text{ mol } / \text{ L·s}$$

9. (a)
$$4 \text{ HI}_{(g)} + O_{2 (g)} \rightarrow 2 \text{ I}_{2(g)} + 2 \text{ H}_2 O_{(g)}$$

The rate of formation of I_2 is 2 times as fast as compared to the rate of consumption of O_2 .

$$= 2 \times 0.0042 \text{ mol / L·s} = 0.0084 \text{ mol / L·s}$$

(b) 4
$$HI_{(g)}$$
 + $O_{2\,(g)}$ \rightarrow 2 $I_{2(g)}$ + 2 $H_2O_{(g)}$

The rate of formation of H₂O is 2 times as fast as compared to the rate of consumption of O₂.

$$= 2 \times 0.0042 \text{ mol } / \text{L·s} = 0.0084 \text{ mol } / \text{L·s}$$

(c)
$$4 \text{ HI}_{(g)} + O_{2 (g)} \rightarrow 2 \text{ I}_{2(g)} + 2 \text{ H}_2 O_{(g)}$$

The rate of consumption of HI is 4 times as fast as compared to the rate of consumption of O₂.

$$= 4 \times 0.0042 \text{ mol } / \text{ L·s} = 0.0168 \text{ mol } / \text{ L·s}$$

10. (a) 4 NO_{2(g)} + O_{2 (g)}
$$\rightarrow$$
 2 N₂O₅ \uparrow

The rate of formation of N₂O₅ is 2 times as fast as compared to the rate of consumption of O₂.

$$= 2 \times 0.024 \text{ mol } / \text{L·s} = 0.048 \text{ mol } / \text{L·s}$$

The rate of consumption of NO_2 is 4 times as fast as compared to the rate of consumption of O_2 .

$$= 4 \times 0.024 \text{ mol } / \text{ L·s} = 0.096 \text{ mol } / \text{ L·s}$$